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Outline of the talk

We shall discuss the following in the lecture.

We recall some results on weak and weak∗ topologies.
Three convergence of bounded linear operators on normed spaces.
Some ergodic theorems.
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Notation

Let us fix some notations.

If A is a subset of a linear space, co A or co(A) is the convex hull of A:{
n∑

i=1

αixi : xi ∈ A, 0 ≤ αi ,

n∑
i=1

αi = 1, n ∈ N

}
.

We write A+ B for {x + y : x ∈ A, y ∈ B}; if A and B are linear spaces
and A ∩ B = {0}, we say that A+ B is a direct sum and write A⊕ B .
This means the representation x + y is unique.
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Notation

Recall that, for a space Y of linear functionals on a space X , the
σ(X ,Y )-topology is the coarest topology on X with respect to which all
functionals in Y are continuous.

The weak topology is the σ(X ,X ∗)-topology, where X ∗ is the space of
continuous linear functionals on X .

The ω∗-topology is the σ(X ∗,X )-topology on X ∗.

lim denotes the limit in the strong (=norm) topology, ω-lim in the weak
topology and ω∗-lim in the ω∗-topology.
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Notation

cl A is the closure of A ⊂ X , and ω-cl A is the closure in the weak
topology. As usual, co A denotes cl co A. Note that this agrees with
ω co A = ω cl co A.
We denote the space of bounded linear operators in X by B(X ), and
T ◦ = I is the identity operator.
〈x , h〉 is the value of the functional h ∈ x∗ in x ∈ X . That is,

〈x , h〉 := h(x).

The adjoint or dual operator of T is the operator T ∗ : X ∗ → X ∗

with
〈Tx , h〉 = 〈x ,T ∗h〉 for x ∈ X , h ∈ X ∗.
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Weak Topology

Weak topology on a set X using a topological space Y and a
collection of functions defined on X :

X is any set and (Y , τ) is a topological space. F is a family of maps from
X into Y . The weak topology on X generated by F (or the F-weak
topology) is the weakest (or, the smallest, the coarsest) topology on X for
which all f ∈ F are continuous. The collection
{∩kj=1f

−1
j (Uj) : Uj ∈ τ, fj ∈ F, 1 ≤ j ≤ k , k = 1, 2, . . .} is a base for this

topology, or, the collection {f −1j (Uj) : Uj ∈ τ, fj ∈ F} is a subbase for this
topology.

The topology on a normed space X given by its norm is the
norm/strong/usual topology on X . The norm topology is “very rich”: it
has “too many” open sets.
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Weak Topology

The weak topology (w -topology) on a normed space X is the weakest
topology on X with respect to which all the functions in X ∗ remain
continuous.

To emphasize that it is the weak topology where the elements of X ∗ act on
X as continuous maps, one denotes it by σ(X ,X ∗)-topology.

The weak topology exists !

Indeed, the class of topologies for which the elements of X ∗ act on X as
continuous maps is a non-empty class: it certainly includes the norm
topology. Taking the intersection of all these topologies, one obtains the
weak topology.
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Neighborhood Base

A subset of X is open in the weak topology iff it can be written as a union
of (possibly infinite many) sets, each of which being an intersection of
finitely many sets of the form f −1(U), where U is open in K.

Therefore every weakly open set is strongly open. The norm topology on a
normed space X is stronger than the weak topology.

Theorem 1 (Characterization of weak convergence of
sequence in X ).
xn → x (weakly) in the weak topology iff f (xn)→ f (x), for all f ∈ X ∗.

Strong convergence implies weak convergence. The converse is not always
true.

But if X is a finite dimensional normed space, then its weak topology is the
same as the norm topology.
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Weak Topology and Weak Convergence

Proposition 2.
Let X be a normed space. Then
1. The weak topology on X is a Hausdorff space (a consequence of

Hahn-Banach theorem).
2. If xn →w x and yn →w y , then xn + yn →w x + y and αxn →w αx .

Also the weak limit is unique.
3. If xn →w x , then every subsequence of (xn) converges weakly to x .
4. Every weakly convergent sequence (xn) is bounded. (a consequence of

Uniform Boundedness theorem).
An unbounded sequence cannot be a weakly convergent sequence.
The analogous statement for generic nets is false. That is, every
weakly convergent net is not necessarily bounded.

Theorem 3 (Mazur’s Theorem).
Every closed convex subset of X is weakly closed.
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Weak Topology and Weak Convergence

The subtlety (not very noticeable) is that weak topology is not induced
from a metric. Then we must be careful to define convergence in terms of
nets rather than just sequences. Weak convergence of a net in `1 does
not imply norm convergence. This is usually just a technicality, so often
restrict our attention to convergence of sequences. However, it is good to
be aware of the distinction.

Theorem 4.
If X is reflexive, then every bounded sequence has a weakly convergent
subsequence.
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Weak∗-Topology

Theorem 5.
Let X be a normed space. For each x ∈ X , consider the evaluation
functional ψx defined on X ∗, ψx(f ) = f (x). Then ψx is a continuous linear
functional on X ∗ since |ψx(f )| = |f (x)| ≤ ‖x‖ ‖f ‖ for all f ∈ X ∗, so that
ψx ∈ X ∗∗ and ‖ψx‖ ≤ ‖x‖. Thus J : X → X ∗∗ defined by x 7→ ψx is a
bounded linear operator. In fact, J is an isometry.

The weak star topology on X ∗ is the weakest topology on X ∗ in which all
the functionals ψx : X ∗ → K are continuous. To emphasize that it is the
weakest topology where the elements of X act on X ∗ as continuous maps,
denoted by σ(X ∗,X )-topology.
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Weak∗-Topology

1. If X is separable, then every bounded sequence in X ∗ has a weak∗

convergent subsequence.
2. The w∗-topology is Hausdorff (Hausdorffness is used for uniqueness).
3. fn → f in the weak∗-topology iff (fn) converges to f pointwise,

fn(x)→ f (x), for all x ∈ X (characterization of w∗-convergence
of sequence in X ∗).

4. If X is finite dimensional, the weak∗-topology of X ∗ coincides with the
norm topology of X ∗.

For infinite dimensional spaces, the w∗-topology never coincides with the
norm topology of X ∗.

Theorem 6.
Every weak∗ convergent sequence is bounded. That is, every weak∗

convergent sequence is uniformly bounded in norm.
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Convergence of Sequences of Operators

Let X and Y be normed spaces.

For sequences of operators Tn ∈ B(X ,Y ) there types of convergence turn
out be of theoretical as well as practical value. These are

1. Convergence in the norm on B(X ,Y ) ;
2. Strong convergence of (Tnx) in Y ;
3. Weak convergence of (Tnx) in Y .

The definitions and terminology were introduced by J. von Neumann.

P. Sam Johnson On the Uniform Ergodic Theorem 13/35



Uniform Operator Topology

Definition 7.
Let X and Y be normed spaces. The topology given by the operator norm
is called the usual topology, or, the uniform operator topology on
B(X ,Y ).

A sequence (Tn) converges uniformly to T in the uniform operator
topology if ‖Tn − T‖ → 0. We denote it by Tn → T and T is called the
uniform limit of (Tn). If T is the uniform limit of (Tn), then
‖T‖ = lim ‖Tn‖.
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Strong Operator Topology

Definition 8.
The strong operator topology is the weak topology generated by the
family of maps Fx : B(X ,Y )→ Y by T 7→ Tx , where x varies over X .

A net Tα in B(X ,Y ) converges strongly to T in the strong operator
topology if ‖Tαx − Tx‖ → 0 for each x ∈ X .

We denote it by Tα →s T and T is called the strong limit of (Tα).
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Convergence of Sequences of Operators

Definition 9.
The weak operator topology is the weak topology generated by the
family of maps Fx ,y∗ : B(X ,Y )→ K by T 7→ y∗(Tx), where x varies over
X and y∗ varies over Y ∗.

A net Tα in B(X ,Y ) converges weakly to T in the weak operator topology
if y∗(Tαx) converges to y∗(Tx), for all y∗ ∈ Y ∗, x ∈ X . We denote it by
Tα →w T . T is called the weak limit of (Tα). Neigbourhood base at
0 = {T : |y∗(Txi )| < ε, i = 1, 2, . . . , n}.

It is not difficult to show that uniform convergent ⇒ strong convergent ⇒
weak convergent (the limit being the same), but the converse is not
generally true, as can be seen from the following examples. If X is a finite
dimensional normed space, then all convergences are same.

P. Sam Johnson On the Uniform Ergodic Theorem 16/35



Convergence of Sequences of Operators

If Tn ∈ B(X ,Y ) and Tn → T uniformly, then T need not be bounded. If
X is Banach, then T is always bounded.

Theorem 10 (Banach-Steinhauss Theorem, 1927).
Let X be a Banach space, Y be a normed space and (Tn) be a sequence in
B(X ,Y ) converging to T (pointwise). Then (‖Tn‖) is a bounded sequence
and T ∈ B(X ,Y ).

Moreover, this theorem does not say that Tn → T uniformly. But it says
that if (Tnx) converges strongly for each x ∈ X , then (Tn) converges
strongly to some T ∈ B(X ,Y ).

The completeness hypothesis on X cannot be dropped from
Banach-Steinhauss Theorem.
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Convergence of Sequences of Operators

Theorem 11.
Let (fn) be a sequence of bounded linear functionals on a Banach space X .
Suppose for each x , (fn(x)) converges to a limit f (x). Then f is a bounded
linear functional.

This result says that the point limit of continuous linear functionals is
continuous linear. But the result is not true if we remove linearity.

Example 12.
fn : [0, 1]→ [0, 1] defined by fn(x) = xn. Each fn is continuous and
fn(x)→ f (x) but f is discontinuous.
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Convergence of Sequences of Operators

Theorem 13.
Let X be a Banach space and Y ,Z be normed spaces. Let An,A be linear
operators from X to Y and Bn,B be linear operators from Z to X . If each
An is continuous, Anx → Ax for every x ∈ X and Bnz → Bz for every
z ∈ Z , then AnBnz → ABz for every z ∈ Z . That is, if An →s A and
Bn →s B , then BnAn →s BA.
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Convergence of Sequences of Operators

If the convergence is uniform, then T ∈ B(X ,Y ). If the convergence is
strong or weak, T is still linear but may be unbounded if X is not complete.

Example 14.
Consider X as c00 with respect to ‖.‖2. A sequence of bounded linear
operators Tn on X is defined by

Tnx = (x1, 2x2, 3x3, . . . , nxn, xn+1, xn+2, . . .).

This sequence (Tn) converges strongly to the unbounded operator T
defined by Tx = (x1, 2x2, 3x3, . . .). However, if X is complete, the situation
illustrated by this example cannot occur for strong operator convergence.
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Convergence of Sequences of Operators

Theorem 15 (Uniform Boundedness Theorem).
Let X and Y be normed spaces and (Tn) be a sequence in B(X ,Y ) such
that (Tnx) converges in Y for every x ∈ X . If (‖Tn‖) is a bounded
sequence, then the operator T : X → Y defined by Tx = limn Tnx , x ∈ X ,
belongs to B(X ,Y ) and ‖T‖ ≤ lim infn ‖Tn‖.

By Uniform Boundedness theorem, the condition of boundedness of (‖Tn‖)
is redundant if X is Banach. That is, if X is Banach and if Tn →s T , then
T is also bounded by Uniform Boundedness principle.

What is the relation between this T and the uniform limit of (Tn)?

From above point, the norm of T is less than or equal to the norm of
uniform limit of (Tn).
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Convergence of Sequences of Operators

Suppose X is Banach. If a sequence (Tn) is Cauchy in the strong sense,
that is, for all x ∈ X the sequence (Tnx) is Cauchy in X , then there exists
T ∈ B(X ) such that Tn → T strongly. That is, if X is complete, then the
strong operator topology on B(X ,Y ) is complete.

The sequence (Tn) in B(X ,Y ) is said to be a strong Cauchy sequence if
the sequence (Tnx) is a Cauchy sequence for all x ∈ X . The above result
says that if the spaces X and Y are Banach spaces, then B(X ,Y ) is
complete in the strong sense.

Proposition 16.
If X is finite dimensional and (Tn) is a sequence in B(X ,Y ) such that
Tnx → Tx for all x ∈ X . Then T ∈ B(X ,Y ) and ‖Tn − T‖ → 0.

If X is finite dimensional, then the uniform operator topology in B(X ,Y ) is
complete.
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Power Bounded Operator

Definition 17.
Let X be a Banach space and T ∈ B(X ). The operator T is called power
bounded if the norms of the powers T n (n ≥ 0) are uniformly bounded
(sup

n
‖T n‖ <∞) ;

and Cesàro bounded if the norms of the Cesàro averages of T

An(T ) :=
I+ T + · · ·+ T n−1

n

are uniformly bounded.
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Uniformly/mean/weakly mean ergodic operator

Definition 18.
Let X be a Banach space and T ∈ B(X ).
1. If {An(T )} converges uniformly in B(X ), then T is called uniformly

ergodic.
2. If {An(T )} converges strongly in B(X ), then T is called mean

ergodic.
3. If {An(T )} converges weakly in B(X ), then T is called weakly mean

ergodic.

As “uniform convergent =⇒ strong convergent =⇒ weak
convergent” (the limit being the same), we have T is uniformly ergodic
=⇒ mean ergodic =⇒ weakly mean ergodic.

P. Sam Johnson On the Uniform Ergodic Theorem 24/35



Uniformly/mean/weakly mean ergodic operator

The following identity is useful to say the convergence of the sequence{
T n−1

n

}
n≥1

when T is uniformly/mean/weakly mean ergodic :

T n−1 = nAn(T )− (n − 1)An−1(T ).

So,
T n−1

n
= An(T )− (n − 1)

n
An−1(T ).

If T is power bounded, then T is Cesàro bounded.

If T is Cesàro bounded, then
{

T n−1

n

}
is uniformly bounded.

If T is uniformly ergodic, then T is Cesàro bounded.

If T is uniformly ergodic, then
{

T n−1

n

}
is uniformly bounded.
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Uniformly/mean/weakly mean ergodic operator

If T is power bounded, then
{

T n−1

n

}
→ 0 uniformly.

If T is power bounded, then T is Cesàro bounded and
{

T n−1

n

}
→ 0

uniformly.

If T is mean ergodic, then T is Cesàro bounded and
{

T n−1

n

}
→ 0

strongly.
If T is weakly mean ergodic, then T is Cesàro bounded and{

T n−1

n

}
→ 0 weakly.
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von Neumann’s Mean Ergodic Theorem, 1931

Theorem 19.
Let U be a unitary operator on a Hilbert space (more generally, an
isometric linear operator,

‖Ux‖ = ‖x‖, for all x ∈ H,

not necessarily surjective, that is, UU∗ = I, but not necessarily UU∗ = I).
The sequence of averages {An(U)} converges to P in the strong operator
topology, where P is the orthogonal projection onto the closed subspace
N(I− U).

That is, every unitary operator (not necessarily surjective) is mean ergodic.
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Mean ergodic theorems for operators

Von Neumann [1931] proved for unitary operators in a
complex Hilbert space

Visser proved for power bounded operators
on a Hilbert space

Riesz proved for power bounded operators
on Lp, 1 < p <∞

Lorch, Kaukutani proved for power bounded operators in a
Yosida (independently) reflexive (real or complex) Banach space
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Examples

Hile gave examples of mean ergodic operators which
are not power bounded

Derriennic gave an example of a mean ergodic operator T
in a Hilbert space for which ‖T

n‖
n

9 0, and T∗ is not
mean ergodic (but only weakly mean ergodic)

Tomilov and gave a general method of constructing such examples
Zemanek
Lorch, Kaukutani proved for power bounded operators in a
Yosida (independently) reflexive (real or complex) Banach space

ToZ provided an example that both T and T∗

weakly mean ergodic but not mean ergodic
Kornfeld and Keosk constructed for every ε > 0, a mean ergodic positive

operator T on L1 such that ‖T
n‖

n1−ε →∞ ;

by Cesàro boundedness, ‖T
n‖
n

is bounded.
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Mean Ergodic Theorem

Theorem 20 (U. Krengel, p.72).
Let T be a Cesàro bounded linear operator in a Banach space X . For any
x ∈ X , satisfying lim

n→∞
T n−1

n x = 0, and any y ∈ X the following assertions
are equivalent :
1. Ty = y and y ∈ co{x ,Tx ,T 2x , · · · } ;
2. y = limAnx ;
3. y = w - limAnx ;
4. y is a weak cluster point of the sequence {Anx}.

Corollary 21.
Let T be a power bounded operator on X . Then T is mean ergodic if and
only if T is weakly mean ergodic.
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Mean Ergodic Theorem

The present formulation of the mean ergodic theorem is a special ease of
results of Eberlein [1949], but the main assertions emerged already with the
work of F.Riesz [1938] for X = Lp, and independently with the work of K.
Yosida [1938] and S. Kakutani [1938] for general Banach spaces; see also
Yosida-Kakutani [1941].

The following important special case was proved by E.Lorch [1939]
independently:

Theorem 22.
If T is a power bounded linear operator in a reflexive Banach space X , the
averages {Anx} converges in norm to a T-invariant limit for all x ∈ X .
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Splitting Theorem

Our next aim is a splitting theorem for

Xme = Xme(T ) = {x ∈ X : limAnx exists}.

Clearly, if T is Cesàro bounded, Xme is a closed linear subspace of X .

T is called mean ergodic if X = Xme .

We shall use the notation

F = F (T ) := {x ∈ X : Tx = x},
N := {x − Tx : x ∈ X} = (I− T )X ,

F∗ = F∗(T ) := {h ∈ X ∗ : T ∗h = h},
N∗ := (I− T ∗)X ∗.
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Splitting Theorem

Most of the next theorem is due to Yosida [1938] :

Theorem 23.

Let T be Cesàro bounded, and assume that lim T n−1

n x = 0 holds for all
x ∈ X . Then Xme = F ⊕ cl N. The operator P assigning to x ∈ Xme the
limit Px := limAnx is the projection of Xme onto F .

We have P = P2 = TP = PT .

For any z ∈ X , the following assertions are equivalent :
1. limAnz = 0 ;
2. 〈z , h〉 = 0 for all h ∈ F∗ ;
3. z ∈ cl N.

are equivalent.
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Splitting Theorem

Recall that a linear operator Q is called projection if Q = Q2.

A projection with Q = QT = TQ will be called T -absorbing. Thus, P is a
T -absorbing projection.

Occasionally, the following criterion of Sine [1970] for mean ergodicity is
useful:

Theorem 24.

Let T be Cesàro bounded and lim T n−1

n x = 0 holds for all x . Then T is
mean ergodic iff F separates F∗.
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