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QOutline of the talk

We shall discuss the following in the lecture.

m We recall some results on weak and weak* topologies.
m Three convergence of bounded linear operators on normed spaces.

m Some ergodic theorems.
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Let us fix some notations.

If Ais a subset of a linear space, co A or co(A) is the convex hull of A:

n n
{Za;x;:x,- GA,OSa;,Za;: l,neN}.

i=1 i=1

We write A+ B for {x +y:x € A,y € B}, if A and B are linear spaces
and AN B = {0}, we say that A+ B is a direct sum and write A& B.
This means the representation x + y is unique.
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Recall that, for a space Y of linear functionals on a space X, the
a(X, Y)-topology is the coarest topology on X with respect to which all
functionals in Y are continuous.

The weak topology is the o(X, X*)-topology, where X* is the space of
continuous linear functionals on X.

The w*-topology is the o(X*, X)-topology on X*.

lim denotes the limit in the strong (=norm) topology, w-lim in the weak
topology and w*-lim in the w*-topology.
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m cl Ais the closure of A C X, and w-c/ A is the closure in the weak
topology. As usual, €6 A denotes cl co A. Note that this agrees with
w-co A = w-cl co A.

m We denote the space of bounded linear operators in X by B(X), and
T° =1 is the identity operator.

m (x, h) is the value of the functional h € x* in x € X. That is,
(x, h) := h(x).
The adjoint or dual operator of T is the operator T* : X* — X*

with
(Tx,h) = (x, T*h) for xe€ X,he X"
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Weak Topology

Weak topology on a set X using a topological space Y and a
collection of functions defined on X :

X is any set and (Y, 7) is a topological space. F is a family of maps from
X into Y. The weak topology on X generated by F (or the F-weak
topology) is the weakest (or, the smallest, the coarsest) topology on X for
which aII f € F are continuous. The collection

{ NU):Uper,f€F,1<j<kk=1,2,..}is a base for this

topology, or, the collection {f;” Y(U;) : U € 7,f; € F} is a subbase for this
topology.

The topology on a normed space X given by its norm is the
norm /strong/usual topology on X. The norm topology is “very rich™: it
has “too many” open sets.
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Weak Topology

The weak topology (w-topology) on a normed space X is the weakest
topology on X with respect to which all the functions in X* remain
continuous.

To emphasize that it is the weak topology where the elements of X* act on
X as continuous maps, one denotes it by o (X, X*)-topology.

The weak topology exists !

Indeed, the class of topologies for which the elements of X* act on X as
continuous maps is a non-empty class: it certainly includes the norm
topology. Taking the intersection of all these topologies, one obtains the
weak topology.
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Neighborhood Base

A subset of X is open in the weak topology iff it can be written as a union
of (possibly infinite many) sets, each of which being an intersection of
finitely many sets of the form f~1(U), where U is open in K.

Therefore every weakly open set is strongly open. The norm topology on a
normed space X is stronger than the weak topology.

Theorem 1 (Characterization of weak convergence of

sequence in X).

Xn — x (weakly) in the weak topology iff f(xn) — f(x), for all f € X*.

Strong convergence implies weak convergence. The converse is not always
true.

But if X is a finite dimensional normed space, then its weak topology is the
same as the norm topology.
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Weak Topology and Weak Convergence

Let X be a normed space. Then

1. The weak topology on X is a Hausdorff space (a consequence of
Hahn-Banach theorem).

2. If xp —w x and y, —w y, then x, + v, —w x + y and ax, — ax.
Also the weak limit is unique.

3. If x, —w X, then every subsequence of (x,) converges weakly to x.

4. Every weakly convergent sequence (x,) is bounded. (a consequence of
Uniform Boundedness theorem).
An unbounded sequence cannot be a weakly convergent sequence.
The analogous statement for generic nets is false. That is, every
weakly convergent net is not necessarily bounded.

Theorem 3 (Mazur's Theorem).

Every closed convex subset of X is weakly closed.
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Weak Topology and Weak Convergence

The subtlety (not very noticeable) is that weak topology is not induced
from a metric. Then we must be careful to define convergence in terms of
nets rather than just sequences. Weak convergence of a net in /; does
not imply norm convergence. This is usually just a technicality, so often
restrict our attention to convergence of sequences. However, it is good to
be aware of the distinction.

Theorem 4.

If X is reflexive, then every bounded sequence has a weakly convergent
subsequence.
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Weak*-Topology

Theorem 5.

Let X be a normed space. For each x € X, consider the evaluation
functional 1, defined on X*, 1, (f) = f(x). Then vy is a continuous linear
functional on X* since |1, (f)| = |f(x)| < ||x|| ||f]| for all f € X*, so that
Py € X* and ||[¢x|| < |Ix||. Thus J : X — X** defined by x — 1)y is a
bounded linear operator. In fact, J is an isometry.

The weak star topology on X* is the weakest topology on X* in which all
the functionals v, : X* — K are continuous. To emphasize that it is the
weakest topology where the elements of X act on X* as continuous maps,
denoted by o(X*, X)-topology.

P. Sam Johnson On the Uniform Ergodic Theorem 11/35



Weak*-Topology

1. If X is separable, then every bounded sequence in X* has a weak*
convergent subsequence.

2. The w*-topology is Hausdorff (Hausdorffness is used for uniqueness).

3. f, — f in the weak*-topology iff (f,) converges to f pointwise,
fa(x) — f(x), for all x € X (characterization of w*-convergence
of sequence in X*).

4. If X is finite dimensional, the weak*-topology of X* coincides with the
norm topology of X*.

For infinite dimensional spaces, the w*-topology never coincides with the
norm topology of X*.

Theorem 6.

Every weak* convergent sequence is bounded. That is, every weak*
convergent sequence is uniformly bounded in norm.
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Convergence of Sequences of Operators

Let X and Y be normed spaces.

For sequences of operators T, € B(X, Y) there types of convergence turn
out be of theoretical as well as practical value. These are

1. Convergence in the norm on B(X,Y) ;
2. Strong convergence of (T,x) in Y ;
3. Weak convergence of (T,x) in Y.

The definitions and terminology were introduced by J. von Neumann.
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Uniform Operator Topology

Definition 7.

Let X and Y be normed spaces. The topology given by the operator norm

is called the usual topology, or, the uniform operator topology on
B(X,Y).

A sequence (T,) converges uniformly to T in the uniform operator
topology if || T, — T|| — 0. We denote it by T, — T and T is called the
uniform limit of (T,). If T is the uniform limit of (T,), then

[Tl = lim [| T]].
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Strong Operator Topology

Definition 8.

The strong operator topology is the weak topology generated by the
family of maps Fy : B(X,Y) — Y by T — Tx, where x varies over X.

A net T, in B(X,Y) converges strongly to T in the strong operator
topology if || Tox — Tx|| — 0 for each x € X.

We denote it by T, —s T and T is called the strong limit of (T,).
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Convergence of Sequences of Operators

Definition 9.

The weak operator topology is the weak topology generated by the
family of maps Fy , : B(X,Y) = K by T — y*(Tx), where x varies over
X and y* varies over Y*.

A net T, in B(X,Y) converges weakly to T in the weak operator topology
if y*(Tax) converges to y*(Tx), for all y* € Y*, x € X. We denote it by
To —w T. T is called the weak limit of (T,). Neigbourhood base at
0={T:|y*(Tx)| <e,i=1,2,...,n}.

It is not difficult to show that uniform convergent = strong convergent =
weak convergent (the limit being the same), but the converse is not
generally true, as can be seen from the following examples. If X is a finite
dimensional normed space, then all convergences are same.
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Convergence of Sequences of Operators

If T, € B(X,Y)and T, — T uniformly, then T need not be bounded. If
X is Banach, then T is always bounded.

Theorem 10 (Banach-Steinhauss Theorem, 1927).

Let X be a Banach space, Y be a normed space and (T,) be a sequence in
B(X,Y) converging to T (pointwise). Then (|| T,||) is a bounded sequence
and T € B(X,Y).

Moreover, this theorem does not say that T,, — T uniformly. But it says
that if (Tpx) converges strongly for each x € X, then (T,) converges
strongly to some T € B(X,Y).

The completeness hypothesis on X cannot be dropped from
Banach-Steinhauss Theorem.
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Convergence of Sequences of Operators

Let (f,) be a sequence of bounded linear functionals on a Banach space X.
Suppose for each x, (f,(x)) converges to a limit f(x). Then f is a bounded
linear functional.

This result says that the point limit of continuous linear functionals is
continuous linear. But the result is not true if we remove linearity.

fn 2 [0,1] — [0, 1] defined by f,(x) = x". Each f, is continuous and
fa(x) — f(x) but f is discontinuous.
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Convergence of Sequences of Operators

Let X be a Banach space and Y, Z be normed spaces. Let A,, A be linear
operators from X to Y and B, B be linear operators from Z to X. If each
A, is continuous, A,x — Ax for every x € X and B,z — Bz for every

ze€ Z, then A B,z — ABz for every z € Z. That is, if A, —s A and

B, —s B, then B,A, — BA.
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Convergence of Sequences of Operators

If the convergence is uniform, then T € B(X, Y). If the convergence is
strong or weak, T is still linear but may be unbounded if X is not complete.

Example 14.

Consider X as coo with respect to ||.||2. A sequence of bounded linear
operators T, on X is defined by

TnX = (Xla 2X27 3X37 -+ oy NXpy Xnt-1, X425 - - )

This sequence (T,) converges strongly to the unbounded operator T
defined by Tx = (x1,2x2,3x3,...). However, if X is complete, the situation
illustrated by this example cannot occur for strong operator convergence.

v
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Convergence of Sequences of Operators

Theorem 15 (Uniform Boundedness Theorem).

Let X and Y be normed spaces and (T,) be a sequence in B(X,Y) such
that (T,x) converges in Y for every x € X. If (|| Ty||) is a bounded
sequence, then the operator T : X — Y defined by Tx = lim, T, x, x € X,
belongs to B(X,Y) and | T|| < liminf, | T,

By Uniform Boundedness theorem, the condition of boundedness of (|| T,||)
is redundant if X is Banach. That is, if X is Banach and if T,, =5 T, then
T is also bounded by Uniform Boundedness principle.

What is the relation between this T and the uniform limit of (T,)?

From above point, the norm of T is less than or equal to the norm of
uniform limit of (T,).
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Convergence of Sequences of Operators

Suppose X is Banach. If a sequence (T,) is Cauchy in the strong sense,
that is, for all x € X the sequence (T,x) is Cauchy in X, then there exists
T € B(X) such that T,, — T strongly. That is, if X is complete, then the
strong operator topology on B(X, Y) is complete.

The sequence (T,) in B(X, Y) is said to be a strong Cauchy sequence if
the sequence (T,x) is a Cauchy sequence for all x € X. The above result
says that if the spaces X and Y are Banach spaces, then B(X,Y) is
complete in the strong sense.

Proposition 16.

If X is finite dimensional and (T,) is a sequence in B(X,Y) such that
Tox — Tx forall x € X. Then T € B(X,Y) and || T, — T| — 0.

If X is finite dimensional, then the uniform operator topology in B(X, Y) is
complete.
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Power Bounded Operator

Definition 17.

Let X be a Banach space and T € B(X). The operator T is called power
bounded if the norms of the powers T" (n > 0) are uniformly bounded
(sup || T"[| < o0) ;

and Cesaro bounded if the norms of the Cesaro averages of T

I+ T4+ 71
An(T) =

n

are uniformly bounded.
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Uniformly/mean /weakly mean ergodic operator

Definition 18.

Let X be a Banach space and T € B(X).
1. If {An(T)} converges uniformly in B(X), then T is called uniformly
ergodic.
2. If{As(T)} converges strongly in B(X), then T is called mean
ergodic.
3. If{An(T)} converges weakly in B(X), then T is called weakly mean
ergodic.

As “uniform convergent — strong convergent — weak
convergent” (the limit being the same), we have T is uniformly ergodic
—> mean ergodic = weakly mean ergodic.
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Uniformly/mean /weakly mean ergodic operator

The following identity is useful to say the convergence of the sequence

{T:l} . when T is uniformly/mean/weakly mean ergodic :
n>

7" = nAy(T) = (n—1)A,1(T).
So,

= An(T) -

Tn—l (n ; 1)An_1(T)

m If T is power bounded, then T is Cesaro bounded.
m If T is Cesaro bounded, then {%_1} is uniformly bounded.
m If T is uniformly ergodic, then T is Cesaro bounded.

m If T is uniformly ergodic, then {%_1} is uniformly bounded.
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Uniformly/mean /weakly mean ergodic operator

m If T is power bounded, then {%71} — 0 uniformly.

m If T is power bounded, then T is Cesaro bounded and {%_1} -0

uniformly.

m If T is mean ergodic, then T is Cesaro bounded and {T:I} —0
strongly.

m If T is weakly mean ergodic, then T is Cesaro bounded and
{ T';_l} — 0 weakly.
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von Neumann's Mean Ergodic Theorem, 1931

Theorem 19.

Let U be a unitary operator on a Hilbert space (more generally, an
isometric linear operator,

|Ux|| = [|x||, forallx e H,

not necessarily surjective, that is, UU* =1, but not necessarily UU* =1).
The sequence of averages {A,(U)} converges to P in the strong operator

topology, where P is the orthogonal projection onto the closed subspace
N(I - V).

That is, every unitary operator (not necessarily surjective) is mean ergodic.
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Mean ergodic theorems for operators

Von Neumann [1931] | proved for unitary operators in a
complex Hilbert space

Visser proved for power bounded operators
on a Hilbert space

Riesz proved for power bounded operators
only, 1<p<oo

Lorch, Kaukutani proved for power bounded operators in a
Yosida (independently) | reflexive (real or complex) Banach space

P. Sam Johnson On the Uniform Ergodic Theorem 28/35



ETNTIES

Hile gave examples of mean ergodic operators which
are not power bounded
Derriennic gave an example of a mean ergodic operator T

in a Hilbert space for which w -+ 0, and T* is not
mean ergodic (but only weakly mean ergodic)

Tomilov and gave a general method of constructing such examples
Zemanek
Lorch, Kaukutani proved for power bounded operators in a

Yosida (independently) | reflexive (real or complex) Banach space

ToZ provided an example that both T and T*
weakly mean ergodic but not mean ergodic
Kornfeld and Keosk constructed for every € > 0, a mean ergodic positive

n
operator T on Lj such that H_! — 00 ;
Rl

n

by Cesaro boundedness, is bounded.
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Mean Ergodic Theorem

Theorem 20 (U. Krengel, p.72).

Let T be a Cesaro bounded linear operator in a Banach space X. For any
x € X, satisfying lim %_lx =0, and any y € X the following assertions
are equivalent : e

1. Ty=yandy € co{x, Tx, T?x,---} ;

2. y=IlimA,x;

3. y=w-limA,x ;

4.y is a weak cluster point of the sequence {Anx}.

Let T be a power bounded operator on X. Then T is mean ergodic if and
only if T is weakly mean ergodic.
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Mean Ergodic Theorem

The present formulation of the mean ergodic theorem is a special ease of
results of Eberlein [1949], but the main assertions emerged already with the
work of F.Riesz [1938] for X = L,, and independently with the work of K.
Yosida [1938] and S. Kakutani [1938] for general Banach spaces; see also
Yosida-Kakutani [1941].

The following important special case was proved by E.Lorch [1939]
independently:

If T is a power bounded linear operator in a reflexive Banach space X, the
averages {Apx} converges in norm to a T-invariant limit for all x € X.
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Splitting Theorem

Our next aim is a splitting theorem for

Xme = Xme(T) = {x € X : lim Apx exists}.
Clearly, if T is Cesaro bounded, X is a closed linear subspace of X.
T is called mean ergodic if X = Xpe.

We shall use the notation

F=F(T):={xe X: Tx=x},
N:={x—Tx:xeX}=(1-T)X,
F.=F(T):={he X" : T"h= h},
N, = (I— T)X*.
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Splitting Theorem

Most of the next theorem is due to Yosida [1938] :

Theorem 23.

Let T be Cesaro bounded, and assume that lim %_lx = 0 holds for all
x € X. Then Xpme = F @ cl N. The operator P assigning to x € Xpe the
limit Px := lim A,x is the projection of Xme onto F.

We have P = P2 = TP = PT.

For any z € X, the following assertions are equivalent :

1. imA,z=0 ;
2. (z,h) =0 forall heF, ;
3. z€clN.

are equivalent.
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Splitting Theorem

Recall that a linear operator Q is called projection if Q = Q2.

A projection with @ = QT = TQ will be called T-absorbing. Thus, P is a
T-absorbing projection.

Occasionally, the following criterion of Sine [1970] for mean ergodicity is
useful:

Theorem 24.

Let T be Cesaro bounded and lim T';_lx =0 holds for all x. Then T is
mean ergodic iff F separates F,.
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