On the Uniform Ergodic Theorem

P. Sam Johnson

NITK, Surathkal, India

On the Uniform Ergodic Theorem

1/35

We shall discuss the following in the lecture.

- We recall some results on weak and weak* topologies.
- Three convergence of bounded linear operators on normed spaces.
- Some ergodic theorems.

Notation

Let us fix some notations.

If A is a subset of a linear space, co A or co(A) is the **convex hull** of A:

$$\left\{\sum_{i=1}^n \alpha_i x_i : x_i \in A, 0 \le \alpha_i, \sum_{i=1}^n \alpha_i = 1, n \in \mathbb{N}\right\}.$$

We write A + B for $\{x + y : x \in A, y \in B\}$; if A and B are linear spaces and $A \cap B = \{0\}$, we say that A + B is a **direct sum** and write $A \oplus B$. This means the representation x + y is unique.

Notation

Recall that, for a space Y of linear functionals on a space X, the $\sigma(X, Y)$ -topology is the coarest topology on X with respect to which all functionals in Y are continuous.

The weak topology is the $\sigma(X, X^*)$ -topology, where X^* is the space of continuous linear functionals on X.

The ω^* -topology is the $\sigma(X^*, X)$ -topology on X^* .

lim denotes the limit in the strong (=norm) topology, ω -lim in the weak topology and ω^* -lim in the ω^* -topology.

Notation

- cl A is the closure of $A \subset X$, and ω -cl A is the closure in the weak topology. As usual, $\overline{co} A$ denotes cl co A. Note that this agrees with ω - $\overline{co} A = \omega$ -cl co A.
- We denote the space of bounded linear operators in X by $\mathcal{B}(X)$, and $\mathcal{T}^{\circ} = \mathbb{I}$ is the identity operator.
- $\langle x, h \rangle$ is the value of the functional $h \in x^*$ in $x \in X$. That is,

$$\langle x,h\rangle := h(x).$$

The adjoint or dual operator of T is the operator $T^*: X^* \to X^*$ with

$$\langle Tx,h\rangle = \langle x,T^*h\rangle$$
 for $x \in X, h \in X^*$.

Weak topology on a set X using a topological space Y and a collection of functions defined on X:

X is any set and (Y, τ) is a topological space. F is a family of maps from X into Y. The **weak topology** on X generated by F (or the F-weak topology) is the weakest (or, the smallest, the coarsest) topology on X for which all $f \in F$ are continuous. The collection $\{\bigcap_{j=1}^{k} f_j^{-1}(U_j) : U_j \in \tau, f_j \in F, 1 \le j \le k, k = 1, 2, \ldots\}$ is a base for this topology, or, the collection $\{f_j^{-1}(U_j) : U_j \in \tau, f_j \in F\}$ is a subbase for this topology.

The topology on a normed space X given by its norm is the **norm/strong/usual topology** on X. The norm topology is "very rich": it has "too many" open sets.

Weak Topology

The weak topology (*w*-topology) on a normed space X is the weakest topology on X with respect to which all the functions in X^* remain continuous.

To emphasize that it is the weak topology where the elements of X^* act on X as continuous maps, one denotes it by $\sigma(X, X^*)$ -topology.

The weak topology exists !

Indeed, the class of topologies for which the elements of X^* act on X as continuous maps is a non-empty class: it certainly includes the norm topology. Taking the intersection of all these topologies, one obtains the weak topology.

A subset of X is open in the weak topology iff it can be written as a union of (possibly infinite many) sets, each of which being an intersection of finitely many sets of the form $f^{-1}(U)$, where U is open in \mathbb{K} .

Therefore every weakly open set is strongly open. The norm topology on a normed space X is stronger than the weak topology.

Theorem 1 (Characterization of weak convergence of sequence in X).

 $x_n \rightarrow x$ (weakly) in the weak topology iff $f(x_n) \rightarrow f(x)$, for all $f \in X^*$.

Strong convergence implies weak convergence. The converse is not always true.

But if X is a finite dimensional normed space, then its weak topology is the same as the norm topology.

Weak Topology and Weak Convergence

Proposition 2.

- Let X be a normed space. Then
 - 1. The weak topology on X is a Hausdorff space (a consequence of Hahn-Banach theorem).
 - 2. If $x_n \rightarrow_w x$ and $y_n \rightarrow_w y$, then $x_n + y_n \rightarrow_w x + y$ and $\alpha x_n \rightarrow_w \alpha x$. Also the weak limit is unique.
 - 3. If $x_n \rightarrow_w x$, then every subsequence of (x_n) converges weakly to x.
 - 4. Every weakly convergent sequence (x_n) is bounded. (a consequence of Uniform Boundedness theorem).
 An unbounded sequence cannot be a weakly convergent sequence.
 The analogous statement for generic nets is false. That is, every weakly convergent net is not necessarily bounded.

Theorem 3 (Mazur's Theorem).

Every closed convex subset of X is weakly closed.

Weak Topology and Weak Convergence

The subtlety (not very noticeable) is that weak topology is not induced from a metric. Then we must be careful to define convergence in terms of nets rather than just sequences. Weak convergence of a net in ℓ_1 does not imply norm convergence. This is usually just a technicality, so often restrict our attention to convergence of sequences. However, it is good to be aware of the distinction.

Theorem 4.

If X is reflexive, then every bounded sequence has a weakly convergent subsequence.

Weak*-Topology

Theorem 5.

Let X be a normed space. For each $x \in X$, consider the evaluation functional ψ_x defined on X^* , $\psi_x(f) = f(x)$. Then ψ_x is a continuous linear functional on X^* since $|\psi_x(f)| = |f(x)| \le ||x|| ||f||$ for all $f \in X^*$, so that $\psi_x \in X^{**}$ and $||\psi_x|| \le ||x||$. Thus $J : X \to X^{**}$ defined by $x \mapsto \psi_x$ is a bounded linear operator. In fact, J is an isometry.

The weak star topology on X^* is the weakest topology on X^* in which all the functionals $\psi_X : X^* \to \mathbb{K}$ are continuous. To emphasize that it is the weakest topology where the elements of X act on X^* as continuous maps, denoted by $\sigma(X^*, X)$ -topology.

- 1. If X is separable, then every bounded sequence in X* has a weak* convergent subsequence.
- 2. The w^* -topology is Hausdorff (Hausdorffness is used for uniqueness).
- 3. $f_n \to f$ in the weak*-topology iff (f_n) converges to f pointwise, $f_n(x) \to f(x)$, for all $x \in X$ (characterization of w^* -convergence of sequence in X^*).
- If X is finite dimensional, the weak*-topology of X* coincides with the norm topology of X*.

For infinite dimensional spaces, the w^* -topology never coincides with the norm topology of X^* .

Theorem 6.

Every weak^{*} convergent sequence is bounded. That is, every weak^{*} convergent sequence is uniformly bounded in norm.

Let X and Y be normed spaces.

For sequences of operators $T_n \in \mathcal{B}(X, Y)$ there types of convergence turn out be of theoretical as well as practical value. These are

- 1. Convergence in the norm on $\mathcal{B}(X, Y)$;
- 2. Strong convergence of $(T_n x)$ in Y;
- 3. Weak convergence of $(T_n x)$ in Y.

The definitions and terminology were introduced by J. von Neumann.

Uniform Operator Topology

Definition 7.

Let X and Y be normed spaces. The topology given by the operator norm is called the **usual topology**, or, the **uniform operator topology** on $\mathcal{B}(X, Y)$.

A sequence (T_n) converges uniformly to T in the uniform operator topology if $||T_n - T|| \rightarrow 0$. We denote it by $T_n \rightarrow T$ and T is called the uniform limit of (T_n) . If T is the uniform limit of (T_n) , then $||T|| = \lim ||T_n||$.

- 4 周 ト - 4 ヨ ト - 4 ヨ ト

Strong Operator Topology

Definition 8.

The strong operator topology is the weak topology generated by the family of maps $F_x : \mathcal{B}(X, Y) \to Y$ by $T \mapsto Tx$, where x varies over X.

A net T_{α} in $\mathcal{B}(X, Y)$ converges strongly to T in the strong operator topology if $||T_{\alpha}x - Tx|| \to 0$ for each $x \in X$.

We denote it by $T_{\alpha} \rightarrow_{s} T$ and T is called the strong limit of (T_{α}) .

· < 伺 > < 三 > < 三 > · ·

Definition 9.

The **weak operator topology** is the weak topology generated by the family of maps F_{x,y^*} : $\mathcal{B}(X, Y) \to \mathbb{K}$ by $T \mapsto y^*(Tx)$, where x varies over X and y^* varies over Y^* .

A net T_{α} in $\mathcal{B}(X, Y)$ converges weakly to T in the weak operator topology if $y^*(T_{\alpha}x)$ converges to $y^*(Tx)$, for all $y^* \in Y^*$, $x \in X$. We denote it by $T_{\alpha} \rightarrow_w T$. T is called the **weak limit** of (T_{α}) . Neigbourhood base at $0 = \{T : |y^*(Tx_i)| < \varepsilon, i = 1, 2, ..., n\}.$

It is not difficult to show that uniform convergent \Rightarrow strong convergent \Rightarrow weak convergent (the limit being the same), but the converse is not generally true, as can be seen from the following examples. If X is a finite dimensional normed space, then all convergences are same.

16/35

・ロト ・四ト ・ヨト ・ヨト - ヨ

If $T_n \in \mathcal{B}(X, Y)$ and $T_n \to T$ uniformly, then T need not be bounded. If X is Banach, then T is always bounded.

Theorem 10 (Banach-Steinhauss Theorem, 1927).

Let X be a Banach space, Y be a normed space and (T_n) be a sequence in $\mathcal{B}(X, Y)$ converging to T (pointwise). Then $(||T_n||)$ is a bounded sequence and $T \in \mathcal{B}(X, Y)$.

Moreover, this theorem does not say that $T_n \to T$ uniformly. But it says that if $(T_n x)$ converges strongly for each $x \in X$, then (T_n) converges strongly to some $T \in \mathcal{B}(X, Y)$.

The completeness hypothesis on X cannot be dropped from Banach-Steinhauss Theorem.

Theorem 11.

Let (f_n) be a sequence of bounded linear functionals on a Banach space X. Suppose for each x, $(f_n(x))$ converges to a limit f(x). Then f is a bounded linear functional.

This result says that the point limit of continuous linear functionals is continuous linear. But the result is not true if we remove linearity.

Example 12.

 $f_n : [0,1] \to [0,1]$ defined by $f_n(x) = x^n$. Each f_n is continuous and $f_n(x) \to f(x)$ but f is discontinuous.

Theorem 13.

Let X be a Banach space and Y, Z be normed spaces. Let A_n , A be linear operators from X to Y and B_n , B be linear operators from Z to X. If each A_n is continuous, $A_n x \rightarrow Ax$ for every $x \in X$ and $B_n z \rightarrow Bz$ for every $z \in Z$, then $A_n B_n z \rightarrow ABz$ for every $z \in Z$. That is, if $A_n \rightarrow_s A$ and $B_n \rightarrow_s B$, then $B_n A_n \rightarrow_s BA$.

If the convergence is uniform, then $T \in \mathcal{B}(X, Y)$. If the convergence is strong or weak, T is still linear but may be unbounded if X is not complete.

Example 14.

Consider X as c_{00} with respect to $\|.\|_2$. A sequence of bounded linear operators T_n on X is defined by

 $T_n x = (x_1, 2x_2, 3x_3, \ldots, nx_n, x_{n+1}, x_{n+2}, \ldots).$

This sequence (T_n) converges strongly to the unbounded operator T defined by $Tx = (x_1, 2x_2, 3x_3, ...)$. However, if X is complete, the situation illustrated by this example cannot occur for strong operator convergence.

Theorem 15 (Uniform Boundedness Theorem).

Let X and Y be normed spaces and (T_n) be a sequence in $\mathcal{B}(X, Y)$ such that (T_nx) converges in Y for every $x \in X$. If $(||T_n||)$ is a bounded sequence, then the operator $T : X \to Y$ defined by $Tx = \lim_n T_nx$, $x \in X$, belongs to $\mathcal{B}(X, Y)$ and $||T|| \leq \liminf_n ||T_n||$.

By Uniform Boundedness theorem, the condition of boundedness of $(||T_n||)$ is redundant if X is Banach. That is, if X is Banach and if $T_n \rightarrow_s T$, then T is also bounded by Uniform Boundedness principle.

What is the relation between this T and the uniform limit of (T_n) ?

From above point, the norm of T is less than or equal to the norm of uniform limit of (T_n) .

Suppose X is Banach. If a sequence (T_n) is Cauchy in the strong sense, that is, for all $x \in X$ the sequence $(T_n x)$ is Cauchy in X, then there exists $T \in \mathcal{B}(X)$ such that $T_n \to T$ strongly. That is, if X is complete, then the strong operator topology on $\mathcal{B}(X, Y)$ is complete.

The sequence (T_n) in $\mathcal{B}(X, Y)$ is said to be a strong Cauchy sequence if the sequence (T_nx) is a Cauchy sequence for all $x \in X$. The above result says that if the spaces X and Y are Banach spaces, then $\mathcal{B}(X, Y)$ is complete in the strong sense.

Proposition 16.

If X is finite dimensional and (T_n) is a sequence in $\mathcal{B}(X, Y)$ such that $T_n x \to T x$ for all $x \in X$. Then $T \in \mathcal{B}(X, Y)$ and $||T_n - T|| \to 0$.

If X is finite dimensional, then the uniform operator topology in $\mathcal{B}(X, Y)$ is complete.

Power Bounded Operator

Definition 17.

Let X be a Banach space and $T \in \mathcal{B}(X)$. The operator T is called **power bounded** if the norms of the powers T^n $(n \ge 0)$ are uniformly bounded $(\sup_n ||T^n|| < \infty)$;

and Cesàro bounded if the norms of the Cesàro averages of T

$$A_n(T) := \frac{\mathbb{I} + T + \cdots + T^{n-1}}{n}$$

are uniformly bounded.

Uniformly/mean/weakly mean ergodic operator

Definition 18.

Let X be a Banach space and $T \in \mathcal{B}(X)$.

- 1. If $\{A_n(T)\}$ converges uniformly in $\mathcal{B}(X)$, then T is called **uniformly** ergodic.
- 2. If $\{A_n(T)\}$ converges strongly in $\mathcal{B}(X)$, then T is called **mean** ergodic.
- 3. If $\{A_n(T)\}$ converges weakly in $\mathcal{B}(X)$, then T is called weakly mean ergodic.

As "uniform convergent \implies strong convergent \implies weak convergent" (the limit being the same), we have T is uniformly ergodic \implies mean ergodic \implies weakly mean ergodic.

- ロ ト - 4 同 ト - 4 回 ト - - 三日

Uniformly/mean/weakly mean ergodic operator

The following identity is useful to say the convergence of the sequence $\left\{\frac{T^{n-1}}{n}\right\}_{n\geq 1}$ when T is uniformly/mean/weakly mean ergodic :

$$T^{n-1} = nA_n(T) - (n-1)A_{n-1}(T).$$

So,

$$\frac{T^{n-1}}{n} = A_n(T) - \frac{(n-1)}{n} A_{n-1}(T).$$

- If T is power bounded, then T is Cesàro bounded.
- If T is Cesàro bounded, then $\left\{\frac{T^{n-1}}{n}\right\}$ is uniformly bounded.
- If T is uniformly ergodic, then T is Cesàro bounded.
- If T is uniformly ergodic, then $\left\{\frac{T^{n-1}}{n}\right\}$ is uniformly bounded.

Uniformly/mean/weakly mean ergodic operator

- If T is power bounded, then $\left\{\frac{T^{n-1}}{n}\right\} \to 0$ uniformly.
- If T is power bounded, then T is Cesàro bounded and $\left\{\frac{T^{n-1}}{n}\right\} \to 0$ uniformly.
- If T is mean ergodic, then T is Cesàro bounded and $\left\{\frac{T^{n-1}}{n}\right\} \to 0$ strongly.
- If T is weakly mean ergodic, then T is Cesàro bounded and $\left\{\frac{T^{n-1}}{n}\right\} \rightarrow 0$ weakly.

von Neumann's Mean Ergodic Theorem, 1931

Theorem 19.

Let U be a unitary operator on a Hilbert space (more generally, an isometric linear operator,

$$||Ux|| = ||x||$$
, for all $x \in H$,

not necessarily surjective, that is, $UU^* = \mathbb{I}$, but not necessarily $UU^* = \mathbb{I}$). The sequence of averages $\{A_n(U)\}$ converges to P in the strong operator topology, where P is the orthogonal projection onto the closed subspace $N(\mathbb{I} - U)$.

That is, every unitary operator (not necessarily surjective) is mean ergodic.

Von Neumann [1931]	proved for unitary operators in a complex Hilbert space
Visser	proved for power bounded operators on a Hilbert space
Riesz	proved for power bounded operators on $L_p, \ 1$
Lorch, Kaukutani Yosida (independently)	proved for power bounded operators in a reflexive (real or complex) Banach space

47 ▶ ∢ ∃

Hile	gave examples of mean ergodic operators which are not power bounded
Derriennic	gave an example of a mean ergodic operator T
	in a Hilbert space for which $\frac{ T^n }{n} \rightarrow 0$, and T^* is not
	mean ergodic (but only weakly mean ergodic)
Tomilov and	gave a general method of constructing such examples
Zemanek	
Lorch, Kaukutani	proved for power bounded operators in a
Yosida (independently)	reflexive (real or complex) Banach space
ToZ	provided an example that both T and T^*
	weakly mean ergodic but not mean ergodic
Kornfeld and Keosk	constructed for every $\varepsilon > 0$, a mean ergodic positive
	operator T on L_1 such that $\frac{\ T^n\ }{n^{1-\varepsilon}} o \infty$;
	by Cesàro boundedness, $\frac{\ T^n\ }{n}$ is bounded.

イロト イヨト イヨト イヨト

Theorem 20 (U. Krengel, p.72).

Let T be a Cesàro bounded linear operator in a Banach space X. For any $x \in X$, satisfying $\lim_{n \to \infty} \frac{T^{n-1}}{n}x = 0$, and any $y \in X$ the following assertions are equivalent :

- 1. Ty = y and $y \in \overline{co}\{x, Tx, T^2x, \cdots\}$;
- 2. $y = \lim A_n x$;
- 3. $y = w \lim A_n x$;
- 4. *y* is a weak cluster point of the sequence $\{A_nx\}$.

Corollary 21.

Let T be a power bounded operator on X. Then T is mean ergodic if and only if T is weakly mean ergodic.

Mean Ergodic Theorem

The present formulation of the mean ergodic theorem is a special ease of results of Eberlein [1949], but the main assertions emerged already with the work of F.Riesz [1938] for $X = L_p$, and independently with the work of K. Yosida [1938] and S. Kakutani [1938] for general Banach spaces; see also Yosida-Kakutani [1941].

The following important special case was proved by E.Lorch [1939] independently:

Theorem 22.

If T is a power bounded linear operator in a reflexive Banach space X, the averages $\{A_nx\}$ converges in norm to a T-invariant limit for all $x \in X$.

Splitting Theorem

Our next aim is a splitting theorem for

$$X_{me} = X_{me}(T) = \{x \in X : \lim A_n x \text{ exists}\}.$$

Clearly, if T is Cesàro bounded, X_{me} is a closed linear subspace of X. T is called **mean ergodic** if $X = X_{me}$.

We shall use the notation

$$F = F(T) := \{x \in X : Tx = x\},\$$

$$N := \{x - Tx : x \in X\} = (\mathbb{I} - T)X,\$$

$$F_* = F_*(T) := \{h \in X^* : T^*h = h\},\$$

$$N_* := (\mathbb{I} - T^*)X^*.$$

Splitting Theorem

Most of the next theorem is due to Yosida [1938] :

Theorem 23.

Let T be Cesàro bounded, and assume that $\lim \frac{T^{n-1}}{n}x = 0$ holds for all $x \in X$. Then $X_{me} = F \oplus cl N$. The operator P assigning to $x \in X_{me}$ the limit $Px := \lim A_n x$ is the projection of X_{me} onto F.

We have
$$P = P^2 = TP = PT$$
.

For any $z \in X$, the following assertions are equivalent :

1.
$$\lim A_n z = 0$$
;
2. $\langle z, h \rangle = 0$ for all $h \in F_*$;
3. $z \in cl N$.

are equivalent.

Splitting Theorem

Recall that a linear operator Q is called **projection** if $Q = Q^2$.

A projection with Q = QT = TQ will be called *T*-absorbing. Thus, *P* is a *T*-absorbing projection.

Occasionally, the following criterion of Sine [1970] for mean ergodicity is useful:

Theorem 24.

Let T be Cesàro bounded and $\lim \frac{T^{n-1}}{n}x = 0$ holds for all x. Then T is mean ergodic iff F separates F_* .

References

Michael Lin, David Shoikhet and laurian Suciu, *Remarks on uniform ergodic theorems*, Acta Sci. Math. (Szeged), 81 (2015), 251-283.

U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.